Generative Adversarial Network for Abstractive Text Summarization

نویسندگان

  • Linqing Liu
  • Yao Lu
  • Min Yang
  • Qiang Qu
  • Jia Zhu
  • Hongyan Li
چکیده

In this paper, we propose an adversarial process for abstractive text summarization, in which we simultaneously train a generative model G and a discriminative model D. In particular, we build the generator G as an agent of reinforcement learning, which takes the raw text as input and predicts the abstractive summarization. We also build a discriminator which attempts to distinguish the generated summary from the ground truth summary. Extensive experiments demonstrate that our model achieves competitive ROUGE scores with the state-of-the-art methods on CNN/Daily Mail dataset. Qualitatively, we show that our model is able to generate more abstractive, readable and diverse summaries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Recurrent Generative Decoder for Abstractive Text Summarization

We propose a new framework for abstractive text summarization based on a sequence-to-sequence oriented encoderdecoder model equipped with a deep recurrent generative decoder (DRGN). Latent structure information implied in the target summaries is learned based on a recurrent latent random model for improving the summarization quality. Neural variational inference is employed to address the intra...

متن کامل

Text Generation using Generative Adversarial Training

Generative models reduce the need of acquiring laborious labeling for the dataset. Text generation techniques can be applied for improving language models, machine translation, summarization, and captioning. This project experiments on different recurrent neural network models to build generative adversarial networks for generating texts from noise. The trained generator is capable of producing...

متن کامل

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Abstractive Document Summarization with a Graph-Based Attentional Neural Model

Abstractive summarization is the ultimate goal of document summarization research, but previously it is less investigated due to the immaturity of text generation techniques. Recently impressive progress has been made to abstractive sentence summarization using neural models. Unfortunately, attempts on abstractive document summarization are still in a primitive stage, and the evaluation results...

متن کامل

Neural Abstractive Text Summarization

Abstractive text summarization is a complex task whose goal is to generate a concise version of a text without necessarily reusing the sentences from the original source, but still preserving the meaning and the key contents. We address this issue by modeling the problem as a sequence to sequence learning and exploiting Recurrent Neural Networks (RNNs). This work is a discussion about our ongoi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.09357  شماره 

صفحات  -

تاریخ انتشار 2017